viernes, 25 de mayo de 2012

CARTOGRAFÍA Y SECUENCIACIÓN


Hay dos categorías principales de técnicas de cartografía genética: ligamiento o cartografía genética, que identifica sólo el orden relativo a los genes a lo largo del cromosoma; y cartografía física, un conjunto de métodos más precisos que permite determinar las distancias entre genes dentro del cromosoma. Ambos tipos de cartografía utilizan marcadores genéticos, que son características físicas o moleculares detectables que se diferencian entre los individuos y se transmiten por herencia.

La cartografía mediante ligamiento se desarrolló a principios de la década de 1900 gracias al trabajo del biólogo y genetista estadounidense Thomas Hunt Morgan. Al observar la frecuencia con que determinadas características se heredaban unidas en numerosas generaciones de moscas de la fruta, llegó a la conclusión de que estos rasgos que con frecuencia se heredan juntos debían estar asociados con genes próximos en el cromosoma. Basándose en sus investigaciones, Morgan logró elaborar un mapa aproximado que recogía el orden relativo de estos genes asociados en los cromosomas, y en 1933 recibió el Premio Nobel de Fisiología y Medicina por su obra.

Los mapas de ligamiento humanos se han elaborado sobre todo siguiendo las pautas de herencia de familias extensas a lo largo de muchas generaciones. Inicialmente, estos estudios se limitaban a los rasgos físicos heredados, fácilmente observables en todos los miembros de la familia. Pero actualmente hay técnicas de laboratorio muy refinadas que permiten a los investigadores crear mapas de ligamiento más detallados comparando la posición de los genes diana en relación con el orden de marcadores genéticos o de segmentos específicos y conocidos del ADN.

La cartografía física determina la distancia real entre puntos diferenciados de los cromosomas. Las técnicas más precisas combinan robótica, uso de láser e informática para medir la distancia entre marcadores genéticos. Para realizar estos mapas se extrae ADN de los cromosomas humanos y se rompe aleatoriamente en numerosos fragmentos. A continuación, éstos se duplican muchas veces en el laboratorio para analizar en las copias idénticas así obtenidas, llamadas clones, la presencia o ausencia de marcas genéticas específicas distintivas. Los clones que comparten varias marcas proceden por lo general de segmentos solapados del cromosoma. Las regiones de solapamiento de los clones pueden a continuación compararse para determinar el orden global de las marcas a lo largo del cromosoma y la secuencia exacta que ocupan inicialmente los segmentos de ADN clonados.

Para determinar la secuencia real de nucleótidos hacen falta mapas físicos muy detallados que recojan el orden exacto de las piezas clonadas del cromosoma. En el Proyecto Genoma Humano se utiliza primordialmente un método de secuenciación desarrollado por el bioquímico británico y dos veces premio Nobel, Frederick Sanger. Este método consiste en replicar piezas específicas de ADN y modificarlas de modo que terminen en una forma fluorescente de uno de los cuatro nucleótidos. En los modernos secuenciadores automáticos de ADN, el nucleótido modificado situado al extremo de una de estas cadenas se detecta con un haz de láser y se determina el número exacto de nucleótidos de la cadena. A continuación se combina esta información en un ordenador para reconstruir la secuencia de pares de bases de la molécula original de ADN.

Duplicar el ADN con precisión y rápidamente tiene una importancia crítica, tanto para la cartografía como para la secuenciación. Inicialmente los fragmentos de ADN humano se replicaban mediante clonación en organismos unicelulares que se dividen rápidamente, como bacterias o levaduras. Esta técnica exige mucho tiempo y mucho trabajo. A finales de la década de 1980 se generalizó el uso de un método revolucionario de reproducción de ADN llamado reacción en cadena de polimerasa (RCP). Esta técnica es fácil de automatizar y puede copiar una sola molécula de ADN varios millones de veces en unas pocas horas. En 1993, el bioquímico estadounidense Kary Mullis recibió el Premio Nobel de Química por idear esta técnica.

¿EN QUE CONSISTE EL PROYECTO?



El Proyecto Genoma Humano (PGH) fue un proyecto de investigación científica con el objetivo fundamental de determinar la secuencia de pares de bases químicas que componen el ADN e identificar y cartografiar los aproximadamente 20.000-25.000 genes del genoma humano desde un punto de vista físico y funcional.


El proyecto, dotado con 280.000 millones de dólares, fue fundado en 1990 en el Departamento de Energía y los Institutos Nacionales de la Salud de los Estados Unidos, bajo la dirección de James D. Watson, con un plazo de realización de 15 años. Debido a la amplia colaboración internacional, a los avances en el campo de la genómica, así como los avances en la tecnología computacional, un borrador inicial del genoma fue terminado en el año 2000 (anunciado conjuntamente por el expresidente Bill Clinton y el exprimer ministro británico Tony Blair el 26 de junio de 2000), finalmente el genoma completo fue presentado en abril del 2003, dos años antes de lo esperado. Un proyecto paralelo se realizó fuera del gobierno por parte de la Corporación Celera. La mayoría de la secuenciación se realizó en las universidades y centros de investigación de los Estados Unidos, Canadá, Nueva Zelanda, Gran Bretaña y España.

Objetivos


*Identificar los aproximadamente 30.000 genes en el ADN humano.


*determinar la secuencia de los tres billones de bases,


*guardar la información generada en bases de datos,


*mejorar las herramientas de análisis de datos,


*transferir tecnologías al sector privado,


*analizar los aspectos éticos, legales, y sociales aparejados al proyecto,



Los objetivos perseguidos con el Proyecto Genoma Humano son múltiples:

Los dos últimos objetivos distinguen el Proyecto Genoma Humano del resto de las investigaciones científicas. En efecto, ninguno despertó como este tanto interés en la población por la gran controversia generada en torno a si se puede patentar el genoma o no, si es un patrimonio de la humanidad o si pertenece al que lo secuenció primero.




EL GENOMA HUMANO


Se llama genoma a la totalidad del material genético de un organismo. El genoma humano tiene entre 50.000 y 100.000 genes distribuidos entre los 23 pares de cromosomas de la célula. Cada cromosoma puede contener más de 250 millones de pares de bases de ADN y se estima que la totalidad del genoma tiene aproximadamente 3.000 millones de pares de bases.

El ADN analizado en el Proyecto genoma humano procede por lo general de pequeñas muestras de sangre o de tejidos obtenidas de personas diferentes. Aunque los genes del genoma de cada individuo están formados por secuencias de ADN exclusivas, se estima que la variación media de los genomas de dos personas distintas es muy inferior al 1%. Por tanto, las muestras de ADN humano de distintas fuentes presentan muchas más similitudes que diferencias.





ESTRUCTURA DEL ADN


El elemento más importante del cromosoma es la molécula continua de ADN. Esta molécula de doble cadena con forma de escalera retorcida está formada por compuestos químicos enlazados llamados nucleótidos. Cada nucleótido consta de tres partes: un azúcar llamado desoxirribosa, un compuesto de fósforo y una de cuatro posibles bases: adenina, timina, guanina o citosina. Estos componentes están enlazados de manera que el azúcar y el fosfato forman los lados paralelos de la escalera de ADN; las bases de ambos lados se unen por parejas para formar los travesaños; la adenina se enlaza siempre con la timina, y la guanina siempre con la citosina.

El código genético viene determinado por el orden que ocupan las bases adenina, timina, guanina y citosina en la escalera de ADN. Por lo general, cada sección de esta escalera tiene una secuencia única de pares de bases. Como un gen no es más que una de estas secciones, posee también una secuencia única, que puede utilizarse para diferenciar unos genes de otros y fijar su posición en el cromosoma.

jueves, 17 de mayo de 2012

INTRODUCCIÓN

Proyecto Genoma Humano: es un programa internacional de colaboración científica cuyo objetivo es obtener un conocimiento básico de la dotación genética humana completa. Esta información genética se encuentra en todas las células del cuerpo, codificada en el ácido desoxirribonucleico (ADN). El programa pretende identificar todos los genes del núcleo de la célula humana, establecer el lugar que los genes ocupan en los cromosomas del núcleo y determinar mediante secuenciación la información genética codificada por el orden de las subunidades químicas de ADN.

El objetivo último de la representación y secuenciación del genoma es asociar rasgos humanos específicos y enfermedades heredadas con genes situados en lugares precisos de los cromosomas. Cuando se termine, el Proyecto Genoma Humano proporcionará un conocimiento sin precedentes de la organización esencial de los genes y cromosomas humanos. Promete revolucionar el tratamiento y la prevención de numerosas enfermedades humanas, ya que penetrará en los fenómenos bioquímicos básicos que las sustentan.

La idea de iniciar un estudio coordinado del genoma humano surgió de una serie de conferencias científicas celebradas entre 1985 y 1987. El Proyecto Genoma Humano ganó impulso en Estados Unidos en 1990 con la ampliación de la financiación de los Institutos Nacionales de Salud (NIH) y del Departamento de Energía (DOE). Uno de los primeros directores del programa en Estados Unidos fue el bioquímico James Watson, que en 1962 compartió el Premio Nobel de Fisiología y Medicina con los biofísicos británicos Francis Crick y Maurice Wilkins por el descubrimiento de la estructura del ADN. Muchos países tienen en marcha programas oficiales de investigación sobre el genoma humano como parte de esta colaboración informal, entre ellos Francia, Alemania, Japón, Reino Unido y otros miembros de la Unión Europea. El coste de la parte del programa que se realiza en Estados Unidos es de 3.000 millones de dólares a lo largo de 15 años, hasta el 2005.